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Abstract
Using the density-matrix approach, we study intersubband tunnelling in
superlattices subject to both dc and ac electric fields aligned perpendicular
to the layers. Zener-photon resonances and dynamic localization are identified
both in the carrier occupation numbers and the current density. While a global,
time-averaged population inversion cannot occur in the simple two-band model
considered, a temporal inversion is predicted to appear due to strong ac fields
in the THz range. At the Zener-photon resonances, the THz field may generate
appreciable gain.

1. Introduction

The dynamics of charged carriers in a superlattice (SL) under the action of both dc and ac
electric fields has been the subject of intensive research. Electromagnetic radiation in the
THz regime (0.1–10 THz) covers the important energy range of intersubband transitions in
quantum-confined semiconductor heterostructures, which is extremely important for infrared
emission and detector applications. Under definite conditions, the carriers are predicted to
reveal a variety of time-dependent phenomena such as Bloch oscillations [1], intersubband
Zener tunnelling [2, 3] and absolute negative conductance near zero bias [4, 5]. In particular,
the phenomenon of dynamic localization has received a great deal of attention [6–8].

In the presence of a high dc electric field, an electron in a single miniband is predicted
to execute Bloch oscillations. Without any collisions, they move along closed orbits and
no longer contribute to the stationary carrier transport, which leads to negative differential
conductivity. In this transport regime, carrier scattering, which enables transport, plays an
important role. If an additional ac field in the THz range is applied to the SL, resonant
delocalization of carriers occurs for a Bloch frequency �dc = eEdcd/h̄ (Edc is the strength of
the dc field and d the SL period) equal to an integer multiple of the THz frequency ω. This
may result in considerable gain and cause photon-assisted dc transport. However, the related
current–voltage (I–V ) characteristics and the shape of the resonance peaks are singular in
character as long as lifetime broadening is not taken into account. Most of the theoretical
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studies treated collisional broadening in the constant relaxation-time approximation and relied
on the Tien–Gordon or Tucker formula [9, 10] in their calculation of the transport properties
under THz irradiation [11–15]. All these theoretical treatments are essentially one dimensional
in nature and do not recognize the fact that carrier scattering by impurities, by phonons and
among themselves makes the problem truly three dimensional. This may lead to results that
are significantly different from those of one-dimensional models. Within a balance-equation
approach, impurity and phonon scattering have been treated adequately in [16]. However,
the balance equations are not designed to cope with the Wannier–Stark (WS) localization,
which becomes essential at high electric field strengths. Quantum effects, such as cyclotron-
Stark-phonon–photon resonances, which are described beyond the semiclassical transport
model, have been studied recently within the density-matrix approach [17, 18]. Using the
semiconductor Bloch equations, fractional WS ladders have been predicted to occur, when the
ratio of the Bloch frequency �dc to the ac-field frequency ω becomes a fractional number [19].

Additional interesting resonance phenomena are expected to appear in the SL transport,
when the interminiband dynamics is considered. Coherent effects have been treated, which are
induced by alternating electric fields. One interesting phenomenon is the collapse of quasi-
energy bands [6–8], which is nothing but a signature of dynamical localization. Coherent
transport has been studied within a one-dimensional model [3]. At avoided crossings of the
two interpenetrating WS ladders, coherent oscillations between the minibands occur, which
are called tunnelling or intersubband Zener resonances. The destruction of Zener resonances
and Bloch oscillations in random external fields has been studied within the density-matrix
approach [20]. The assumption of no dissipation made by the afore-mentioned authors seems
to be inadequate for interpreting experimental results in real systems. Rather, it is expected
that scattering processes play a crucial role in almost all current contributions arising in a
multisubband system. This will be demonstrated in the present paper, in which we identify
various tunnelling- and scattering-induced current contributions related to the external dc and ac
fields. While tunnelling is treated in a rigorous quantum-mechanical manner, we will consider
scattering within the simple relaxation-time approximation. That means, we follow former
theoretical studies by neglecting the heating of the lateral electron motion. This simple one-
dimensional model has not been chosen to give an accurate representation of real systems. It is
our intent here to use a model simple enough for a clear identification of current contributions
originating from tunnelling or scattering events. When the subbands are decoupled from
each other, our approach reproduces the widely used quasiclassical description [11–15] of
intraminiband transport in SLs subject to dc and ac electric fields.

2. Solution of the kinetic equation and calculation of the carrier density

The time-averaged current density for carrier motion along the SL axis is calculated from
the Wigner-transformed, intraband distribution function f ν

ν (
�k, t) (with ν being the subband

index). The explicit spatial dependence describing field-domain formation is not taken into
account. In the expression for the current density

jz = en

h̄

∑
�kν

∂εν(�k)
∂kz

ω

2π

∫ 2π/ω

0
dt f ν

ν (
�k, t) (1)

besides the time-averaged distribution function, the gradient of the dispersion relation εν(�k)
of the νth miniband appears. We consider a simple two-band tight-binding SL model

ε1(�k) = h̄2�k2
⊥

2m
+
�1

2
(1 − cos kzd) (2)
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ε2(�k) = h̄2�k2
⊥

2m
+ εg +

�2

2
(1 + cos kzd) (3)

with �1 (�2) being the width of the lower (upper) miniband and εg the mini-gap energy. For
simplicity, we do not consider a possible nonparabolicity of the lateral electron motion, which
we will characterize by only one effective mass m. In equation (1), n denotes the total electron
density, while in equations (2) and (3) �k⊥ represents the wave-vector within the SL layers. The
kinetic equation for the Wigner-transformed elements of the density matrix f ν ′

ν (�k, t) is given
by [21]{
∂

∂t
+

i

h̄
[εν ′(�k) − εν(�k)] +

e

h̄
�E(t)∇�k

}
f ν ′
ν (�k, t)

+
ie �E(t)

h̄

∑
µ

[ �Qµν(�k)f ν ′
µ (�k, t) − �Qν ′µ(�k)f µ

ν (
�k, t)]

=
∑
µµ′

∑
�k1

f µ′
µ (�k1, t)W

µ′ν ′
µν (�k1, �k | t) (4)

where the dipole matrix elements
�Qµµ′(�k) = −i

∑
�K
χµ′(�k + �K)∇kχ

∗
µ(

�k + �K) (5)

determine the wavefunction overlap calculated from the SL envelope functions χµ. The Q-
term in equation (4) is related to the confining SL potential via the wavefunction χµ. Coupling
constants of scattering processes do not enter this contribution, which describes tunnelling
under the mutual influence of dc and ac electric fields

E(t) = Edc + Eac cos(ωt) (6)

the strengths of which can be expressed by the Bloch frequencies �dc and �ac = eEacd/h̄.
Besides intersubband tunnelling, there are scattering-induced intra- and intersubband electron
transitions characterized by the scattering probabilities Wµν

µ′ν ′ . Quite similar to the tunnelling
contribution in equation (4), we have scattering-induced terms, which are associated with
the off-diagonal elements of the density matrix f ν ′

ν (with ν ′ 	= ν). The related scattering
probabilities have the form Wνν

µµ and are treated within the simple constant relaxation-time
approximation

Wµµ
νν (�k′, �k) → −δ�k,�k′

τ
. (7)

Intersubband transitions due to carrier generation and recombination are treated in a similar
way by

W 12
12 (

�k′, �k) → δ�k,�k′

τ12
W 21

21 (
�k′, �k) → δ�k,�k′

τ21
(8)

where the scattering times τ12 and τ21 are related to each other by the equation τ12 = τ21

× exp(εg/kBT ).
The set of kinetic equations for the elements of the density matrix simplifies considerably

in the relaxation-time approximation and takes the form(
∂

∂t
+
e �E(t)

h̄
∇�k

)
f ν
ν (

�k, t) ± i
e �E(t)

h̄
[ �Q21f

1
2 (

�k, t) − �Q12f
2
1 (

�k, t)]

= − 1

τν
(f ν

ν (
�k, t) − f (0)

ν (�k)) ∓ 1

τ12
f 1

1 (
�k, t) ± 1

τ21
f 2

2 (
�k, t) (9)(

∂

∂t
+

i

h̄
(ε1(�k) − ε2(�k)) +

1

τ
+
e �E(t)

h̄
∇�k

)
f 1

2 (
�k, t) = i

e �E(t)

h̄
�Q12[f 2

2 (
�k, t) − f 1

1 (
�k, t)] (10)
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with τν being the intrasubband scattering time and f (0)
ν an appropriate mean distribution

function, which is associated with the scattering-out term. In equation (9), the upper (lower)
sign refers to ν = 1 (ν = 2). Recently, a similar model has been studied by Zhao et al
[22, 23], who identified the well known intrasubband current contribution and treated tunnelling
effects numerically. In contrast to their numerical study, we are able to carry out calculations
analytically to a late stage, permitting a clear identification of various tunnelling- and scattering-
induced current contributions. In addition, based on our density-matrix description, we are in
the position to derive analytic results valid in some interesting limiting cases. Unfortunately,
Zhao et al [22, 23] did not discriminate between intra- and intersubband scattering times.
Taking into account that intra- and intersubband dissipation mechanisms differ from each other
remarkably, the validity of this approximation has to be strongly questioned. Intrasubband
scattering times are usually much smaller than intersubband relaxation times [24, 25]. In
our study, we focus on GaAs–AlGaAs SLs composed of narrow quantum wells, where the
subband separation energy is larger than the longitudinal–optical (LO) phonon energy. There
is general agreement that the intersubband relaxation of such systems is dominated by LO
phonon scattering and that the intersubband relaxation time is of the order of picoseconds
[24–28]. In our numerical analysis, we will rely on scattering-time parameters that are in the
range of the most typical parameters used in estimations for quantum-cascade lasers [29–33].
Whereas scattering is treated in the relatively crude relaxation-time approximation, the electric-
field induced tunnelling is adequately described by the set of kinetic equations (9) and (10).
To reproduce well known results derived within the Esaki–Tsu model [34], we will follow the
reasoning in the literature [11, 12] by identifying f (0)

ν as the equilibrium distribution function.
To solve equations (9) and (10), we exploit the symmetry properties of the distribution

function [17] (f ν ′
ν (kz + 2π/d, t) = f ν ′

ν (kz, t) and f ν ′
ν (kz, t + 2π/ω) = f ν ′

ν (kz, t)) by making
use of the Fourier transformation

f ν ′
ν (�k, t) =

∞∑
l,m=−∞

eilkzd eimωtf ν ′
ν (l, m). (11)

For constant dipole matrix elements, we obtain the following coupled set of equations for the
diagonal elements of the density matrix:

i(mω + l�dc)f
ν
ν (l, m) +

i

2
l�ac(f

ν
ν (l, m + 1) + f ν

ν (l, m − 1))

± i
eEdc

h̄
[Q21f

1
2 (l, m) − Q12f

2
1 (l, m)]

± i

2

eEac

h̄
[Q21(f

1
2 (l, m−1)+f 1

2 (l, m+1))−Q12(f
2
1 (l, m−1)+f 2

1 (l, m+1))]

= − 1

τν
(f ν

ν (l, m) − δm,0f
(0)
ν (l)) ∓ 1

τ12
f 1

1 (l, m) ± 1

τ21
f 2

2 (l, m) (12)

which will be solved numerically to determine the time-dependent mean occupation numbers
f ν
ν (l = 0,m) (m = 0,±1,±2, . . .). The Fourier components of the equilibrium distribution

function are given by

f (0)
ν (l) = ± Il(�ν/(2kBT ))

I0(�ν/(2kBT ))
Fν (13)

where Fν = f ν
ν (l = 0,m = 0) denotes the occupation probability of the subband ν and

Il are modified Bessel functions. The off-diagonal elements of the density matrix enter the
kinetic equation (12). These elements will be determined analytically under the condition
of strong dc electric fields (�dcτeff � 1, where τeff is an effective scattering time).
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We obtain (see the appendix)

f 1
2 (l, m) = e

h̄
�Edc

�Q12

∞∑
l′,m′=−∞

∞∑
k=−∞

(−1)m−m′
Jm−m′

(
l′
�ac

ω

)
Jm′−k

(
l′
�ac

ω

)

×(−1)l
′
Jl−l′((�1 + �2)/2h̄�)Jl′((�1+�2)/2h̄�)

m′ω + l′�dc − ω21 − i/τ
[f 2

2 (0, k)−f 1
1 (0, k)] (14)

where the effective energy gap h̄ω21 is calculated from

h̄ω21 = εg +
�1 + �2

2
. (15)

The complementary matrix element f 2
1 satisfies the symmetry relation

f 2
1 (l, m) = f 1

2 (−l,−m)∗. (16)

From equations (12) and (14), several special cases can be derived. First, let us treat the carrier
redistribution under the influence of a dc electric field (�ac = 0). In this case, we obtain
immediately the solution

F1 + F2 = 1 F2 = 2�2
dcτA + 1/τ12

4�2
dcτA + 1/τ12 + 1/τ21

(17)

in which the field dependent term A defined by

A =
(
Q12

d

)2 ∞∑
l=−∞

Jl((�1 + �2)/2h̄�dc)
2

(l�dcτ − ω21τ)2 + 1
(18)

may describe a considerable carrier redistribution at the intersubband tunnelling resonance
�dc = ω21. However, as can be seen from equation (17), population inversion cannot occur in
the simple two-band model. In order to account for the additional effect of an alternating field
on the carrier redistribution, one has to go back to equations (12) and (14). Numerical results
are presented and discussed in the next section.

To proceed further in the calculation of the current density, we apply the Fourier
transformation of equation (11) to equation (1) and consider equations (2) and (3). We obtain

jz = ens

2h̄
Im [�1f

1
1 (−1, 0) − �2f

2
2 (−1, 0)] (19)

where ns denotes the carrier sheet density. The density-matrix elements f ν
ν (−1, 0) are

calculated by transforming equation (12) back to the time domain. The resulting first-
order differential equation for f ν

ν (l, t) is solved by taking into account periodic boundary
conditions. Repeating the calculation outlined in the appendix of [17], we obtain in the limit
τ1 ≈ τ2 � τ12, τ21 the analytical result

f ν
ν (l, m) =

∞∑
k,m′=−∞

Jk−m(l�ac/ω)Jk−m′(l�ac/ω)

i(l�dc + kω) + 1/τ1
+ν(l,m

′) (20)

+ν(l,m) = 1

τ1
δm,0f

(0)
ν (l) ∓ i

eEdc

h̄
[Q21f

1
2 (l, m) − Q12f

2
1 (l, m)]

∓ i

2

eEac

h̄
[Q21(f

1
2 (l, m−1)+f 1

2 (l, m+1))−Q12(f
2
1 (l, m−1)+f 2

1 (l, m+1))]

(21)

in which off-diagonal elements of the density matrix appear. Inserting equation (20) together
with (21) into equation (19), various current contributions can be identified.
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The first term on the right-hand side of equation (21) gives rise to the following scattering-
induced current contribution of the νth subband:

j (s)z,ν = ens�ν

2h̄

I1(�ν/(2kBT ))

I0(�ν/(2kBT ))
Fν

∞∑
k=−∞

Jk

(
�ac

ω

)2
(�dc + kω)τ1

((�dc + kω)τ1)2 + 1
(22)

which can be expressed in the widely used Tien–Gordon [9] or Tucker [10] form as

j (s)zν (�dc,�ac) =
∞∑

k=−∞
Jk

(
�ac

ω

)2

jET
zν (�dc + kω) (23)

with jET
zν being the dc current density of the Esaki–Tsu model [34] applied to one subband.

The second term on the right-hand side of equation (21) is associated with tunnelling
induced by the dc electric field and modified by the THz field. In the absence of the ac field
(�ac = 0), one obtains for the tunnelling current

j (t)z = 2ens
τ

(F1 − F2)

(
Q12

d

)2 ∞∑
l=−∞

lJl

(
�1 + �2

2h̄�dc

)2
(�dcτ )

2

(l�dcτ − ω21τ)2 + 1
(24)

which may exhibit sharp peaks at the tunnelling resonances l�dc = ω21 (l = 1, 2, . . .).
The last contribution appearing in+ν , which is proportional toEac, gives rise to tunnelling

events induced by the ac field. The related current density plays only a minor role in our present
approach, in which we focus on the case �ac � �dc.

3. Numerical results and discussion

We will start our numerical analysis of tunnelling in SLs under the influence of both dc and
ac electric fields by treating the field-dependent redistribution of carriers between the two
subbands. Solving the set of linear equations (12) and (14), we will focus on the global
occupation numbers Fν(t) = f ν

ν (l = 0, t). Figure 1 shows the time-averaged occupation
numbers of the lower (F1) and upper (F2) subband as a function of the dc electric field. In the
absence of the THz field (dashed line), a sizable redistribution is observed at the tunnelling
resonance �dc = ω21 marked by a vertical line. At this field strength, the upper and lower
subbands are almost equally populated. However, it is seen from equation (17) that population
inversion cannot occur. The application of an additional ac field in the THz regime leads
to photon sidebands or combined Zener-photon resonances at �dc ± mω = ω21, which are
marked by vertical dashed lines. The thick solid line has been calculated with an �ac value
that fulfills the equation J0(�ac/ω) = 0. In this case, the dynamical localization leads to a
complete disappearance of the main resonance at �dc = ω21. This applies also to the nth
photon replica, when Jn(�ac/ω) = 0 is satisfied. This is illustrated by the thin solid line,
where we have J1(�ac/ω) = 0 so that the photon replica at �dc ± ω = ω21 disappears.

The time-dependent occupation number of the upper subband is shown in figure 2, where
the field strength Eac was incremented in 15 steps from 1 to 4 kV cm−1 as indicated. Fν as
a function of ωt is periodic with the period 2π . The dc electric field strength satisfies the
tunnelling resonance condition �dc = ω21. The subband occupation almost equilibrates in the
considered case. It is expected and confirmed by our numerical calculation that a THz field
cannot give rise to a time-averaged global population inversion. However, as shown in figure 2,
a global population inversion may temporally occur due to the presence of the ac electric field.
The appearance of this interesting effect depends sensitively on the scattering times used in the
calculation. With decreasing intrasubband scattering time, the temporal inversion disappears.
Therefore, more sophisticated calculations are necessary for a reliable prediction of such an
effect.
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Figure 1. Occupation numbers of the lower (F1) and upper (F2) miniband as a function of the
dc electric field. In the calculation, the following parameters have been used: εg = 100 meV,
�1 = 5 meV, �2 = 30 meV, τ = 1 ps, τ21 = 2 ps, τ1 = τ2 = 0.05 ps, h̄ω = 5 meV and
T = 77 K. The dashed line has been calculated with Eac = 0. The thick and thin solid lines
refer to the case of dynamic localization characterized by J0(�ac/ω) = 0 (Eac = 6.012 kV cm−1,
d = 20 nm) and J1(�ac/ω) = 0 (Eac = 9.5793 kV cm−1, d = 20 nm), respectively. Vertical
dashed lines mark the positions of Zener-photon resonances.
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Figure 2. The occupation number of the upper miniband as a function of ωt for Eac values ranging
from 1 to 4 kV cm−1 incremented in 15 steps. The curves referring to Eac = 1, 2, 3 and 4 kV cm−1

are plotted by thick lines. The set of parameters used in the calculation is given by: εg = 100 meV,
�1 = 5 meV,�2 = 50 meV, τ = 2 ps, τ21 = 1 ps, τ1 = τ2 = 1 ps, h̄ω = 2 meV andT = 77 K. The
dc electric field satisfies the tunnelling resonance condition �dc = ω21 (Edc = 63.7802 kV cm−1).

Numerical results for the current density calculated from equations (14), (19), and (20)
are shown in figure 3 by the solid line. The main resonances appear at l�dc = ω21 (l = 1, 2).
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Figure 3. Relative current density jz/j0 (with j0 = 2ens/τ ) as a function of the dc electric field
strength for εg = 100 meV, �1 = 5 meV, �2 = 30 meV, τ = 1 ps, τ21 = 2 ps, τ1 = τ2 = 0.05 ps,
h̄ω = 5 meV and T = 77 K. The strength of the THz field satisfies the condition of dynamic
localization J1(�ac/ω) = 0 (Eac = 9.5793 kV cm−1, d = 20 nm). The dashed line has been
calculated from equation (22). Tunnelling and Zener-photon resonances are marked by vertical
solid and dashed lines, respectively.

At the same time, the scattering-induced current contribution calculated from equation (22)
exhibits sharp peaks (dashed line) due to the field dependence of the occupation numbers Fν .
For the chosen parameter set, photon replicas (marked by vertical dashed lines) group around
the main tunnelling resonance. Again, we considered the case J1(�ac/ω) = 0, in which due
to dynamic localization the replicas at �dc ± ω = ω21 do not appear. The analytic expression
(14) for the off-diagonal elements of the density matrix has been derived under the assumption
of high dc electric fields (�dcτeff � 1). These quantities describe tunnelling events. As field-
mediated tunnelling becomes ineffective at low dc electric fields, we think that our results are
relevant at low field strengths, too.

Another example is shown in figure 4, where the current density is depicted as a function
of the dc electric field strength. Here we used an intraband scattering time, which is ten
times larger than the value used in the calculation for figure 3. The current density shown by
the solid line exhibits sharp maxima at tunnelling and Zener-photon resonances marked by
vertical solid and dashed lines, respectively. Due to dynamic localization, the resonances at
�dc ±ω = ω21 (indicated by arrows) do not occur (J1(�ac/ω) = 0). For the parameters used
in the calculation, the current density becomes negative near zero dc biases and pronounced
Stark-photon resonances appear at �dc = kω. If the ac field is switched off (dashed line), both
the peculiarities at zero bias and the combined Zener-photon resonances disappear completely.
To be noted further is that the Esaki–Tsu peak at about 600 V cm−1 is much more pronounced
than in figure 3. Especially in the region of the photon replicas, considerable gain is predicted
to occur.

The Stark-photon resonances at �dc = mω have been experimentally observed
[4, 5, 35–37] and thoroughly studied on the basis of the Tucker formula given in equation (23).
To the best of our knowledge, the observation of the predicted combined Zener-photon
resonances, which appear beyond the Tucker approach and group around the tunnelling
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Figure 4. Relative current density as a function of the dc electric field strength for the same
parameters as in figure 3 except for εg = 50 meV and τ1 = τ2 = 0.5 ps. The dashed line has been
calculated with Eac = 0. The arrows mark the positions of photon replicas at �dc ± ω = ω21,
which are suppressed due to dynamic localization.

resonance, has not been reported up to now. Their identification may be masked by field-
domain formation.

4. Summary

Within a simple two-band tight-binding model, we have studied the carrier redistribution and
the electric current of a semiconductor SL subject to both dc and ac electric fields. Quantum
mechanical tunnelling and scattering processes have been treated within the density-matrix
approach. We focused our consideration on strong dc electric fields (�dcτeff � 1) and relied
on the relaxation-time approximation. Various scattering-induced current contributions as well
as dc- and ac-field-mediated transport mechanisms due to tunnelling can be identified. The
main tunnelling-related effect of an ac field in the THz range consists in the appearance of
combined Zener-photon resonances at �dc ± mω = ω21, which group around the tunnelling
resonance. These resonances, which appear both in the field-induced carrier redistribution
and the current density, may lead to considerable gain. At particular values of the parameter
�ac/ω (Jm(�ac/ω) = 0), the effect of dynamical localization emerges. This leads to the
disappearance of the mth photon replica in the field dependence of both the occupation number
and the current density.

In the simple two-band model considered, a global population inversion cannot occur.
However, we predict the appearance of a temporal global population inversion induced by
the THz field and in the vicinity of the tunnelling resonance �dc = ω21. This dynamic
effect depends sensitively on the value of the intrasubband scattering times. More refined
model calculations are therefore necessary to confirm this prediction. A realistic microscopic
treatment of scattering would also allow the consideration of other interesting phenomena such
as the appearance of current anomalies due to phonon replicas [38].

Unfortunately, the experimental verification of our predictions may be hindered by field-
domain formation in transport measurements. Another way to observe the predicted effects
could be by using ultracold atoms in accelerating optical potentials.
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Appendix

In this appendix, we derive an analytical solution of equation (10) under the condition of
strongly biased SLs. Introducing a new function G(�k, t) by

G(�k, t) = f 1
2 (

�kt , t) �kt = �k +
∫ t

0
dτ �Eac(τ ) (A.1)

we obtain from equation (10)(
∂

∂t
+

i

h̄
(ε1(�kt ) − ε2(�kt )) +

1

τ
+
e �Edc

h̄
∇�k

)
G(�k, t) = i

e �E(t)

h̄
Q12[f 2

2 (
�kt , t) − f 1

1 (
�kt , t)]

(A.2)

in which only the constant electric field �Edc appears explicitly. In a second step, we introduce
the function

f (�k, t) = G(�k, t) exp

(
− i

eEdc

∫ kzt

0
dk′

z [ε2(�k⊥, k′
z) − ε1(�k⊥, k′

z) − ε21(�k⊥)]
)

(A.3)

with

ε21(�k⊥) = d

2π

∫ 2π/d

0
dkz (ε2(�k) − ε1(�k)) (A.4)

which fulfills a simple equation in Fourier space, when �ac/�dc � 1 is satisfied. By making
use of the Fourier transformation

f (�k, t) =
∞∑

l=−∞
eilkzdf (�k⊥, l, t) (A.5)

we obtain in the limit �ac/�dc � 1[
∂

∂t
+ il�dc − iω21 +

1

τ

]
f (�k⊥, l, t) = iQ12

eE(t)

h̄

× exp

(
il
�ac

ω
sinωt

) ∞∑
l1=−∞

Jl1−l

(
�1 + �2

2h̄�dc

)
[f 2

2 (
�k⊥, l1, t) − f 1

1 (
�k⊥, l1, t)].

(A.6)

Considering the equation

exp

(
il
�ac

ω
sinωt

)
=

∞∑
k=−∞

Jk

(
l
�ac

ω

)
eikωt (A.7)

we may easily Fourier transform equation (A.6) with respect to its time dependence. Under the
condition of strong dc electric fields (�dcτeff � 1), the l = 0 component of the distribution
function dominates [21] (f ν

ν (l 	= 0,m) � f ν
ν (l = 0,m)) so that we obtain

flm = �dc

Q12

d

J−l((�1 + �2)/2h̄�dc)

mω + l�dc − ω21 − i/τ

∞∑
k=−∞

Jk

(
l
�ac

ω

)
[f 2

2 (0,m − k) − f 1
1 (0,m − k)].

(A.8)
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A Fourier transformation of equations (A.1) and (A.3) leads to

f 1
2 (l, m) =

∞∑
l1,m1=−∞

(−1)m−m1Jm−m1

(
l1
�ac

ω

)
Jl−l1

(
�1 + �2

2h̄�dc

)
fl1m1 (A.9)

in which we insert equation (A.8) to get our final result expressed by equation (14).
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